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SUMMARY

Enhancers are the primary determinants of cell
identity, but the regulatory components controlling
enhancer turnover during lineage commitment remain
largely unknown. Here we compare the enhancer
landscape, transcriptional factor occupancy, and
transcriptomic changes in human fetal and adult
hematopoietic stem/progenitor cells and committed
erythroid progenitors. We find that enhancers are
modulated pervasively and direct lineage- and
stage-specific transcription.GATA2-to-GATA1switch
is prevalent at dynamic enhancers and drives
erythroid enhancer commissioning. Examination of
lineage-specific enhancers identifies transcription
factors and their combinatorial patterns in enhancer
turnover. Importantly, by CRISPR/Cas9-mediated
genomic editing, we uncover functional hierarchy
of constituent enhancers within the SLC25A37 su-
per-enhancer. Despite indistinguishable chromatin
features, we reveal through genomic editing the func-
tional diversity of several GATA switch enhancers
in which enhancers with opposing functions coop-
erate to coordinate transcription. Thus, genome-
wide enhancer profiling coupled with in situ enhancer
editing provide critical insights into the functional
complexity of enhancers during development.

INTRODUCTION

Stem cell self-renewal and differentiation require precisely regu-

lated tissue-specific and developmental stage-specific gene
De
expression. Enhancers are cis-acting DNA sequences that can

increase the transcription of genes through cooperative and syn-

ergistic binding of transcription factors (TFs), DNA binding effec-

tors of signaling pathways, and chromatin-modifying complexes

(Banerji et al., 1981). Enhancers function from distal regions in an

orientation-independent manner, and harbor distinct chromatin

features including increased chromatin accessibility, character-

istic histone modifications and DNA hypomethylation, and bidi-

rectional transcription (Bulger and Groudine, 2011). Although

major progress has beenmade toward genome-wide annotation

of candidate enhancers (Andersson et al., 2014; Heintzman

et al., 2007, 2009; Visel et al., 2009a), the molecular processes

controlling enhancer activation and deactivation during lineage

commitment remain poorly understood.

A defining feature of enhancers is their ability to function

as integrated platforms for TF binding, where cell-intrinsic and

-extrinsic signaling cues are interpreted in a highly lineage- and

context-dependent manner (Buecker and Wysocka, 2012).

Despite recent advances in profiling enhancer-associated

biochemical features, the biological importance of individual

enhancers in lineage differentiation is often limited by lack of

insights in enhancer regulation in vivo and in molecular details

of enhancer structure-function in situ. The fundamental ques-

tions related to enhancer function and mechanisms remain un-

answered: how do enhancers regulate precise spatiotemporal

gene expression patterns? How are enhancers organized and

regulated in a high-dimensional chromatin environment? How

do enhancers communicate with their target genes in vivo during

development? Furthermore, how do mutations and genetic var-

iations in enhancers influence human disease?

Recently, intensely marked clusters of enhancers or super-en-

hancers containing an exceptionally high degree of enrichment

of master TFs, Mediator, and chromatin marks have been iden-

tified in a broad range of mammalian cell types (Hnisz et al.,

2013; Parker et al., 2013; Whyte et al., 2013). Super-enhancers
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Figure 1. Comparative Analysis of Enhancer Repertoires during Human Erythropoiesis

(A) Ex vivo erythroid differentiation of fetal liver (FL) or adult bone marrow (BM) CD34+ HSPCs. Cells at matched stages of differentiation (HSPC: F0 and A0;

ProE: F5 and A5) were collected for transcriptomic profiling and ChIP-seq analyses.

(B) Identification of lineage or developmental stage-specific enhancers. Venn diagram shows the overlap between HSPC and ProE, or fetal and adult enhancers.

The numbers of lost, shared, or gained enhancers in each comparison are shown.

(C) ChIP-seq density heatmaps for H3K4me1 and H3K27ac within lost, gained, and shared enhancers in each comparison.

(D) Representative lineage-specific enhancers are shown. The putative active enhancers are depicted by shaded lines.

(E) Representative developmental stage-specific enhancers are shown. The putative active enhancers are depicted by shaded lines.

(F) Enrichment of lineage-defining TFs in lineage-specific enhancers. The top enriched TFmotifs in lost or gained enhancers between HSPCs and ProEs at fetal or

adult stage are shown. p values were calculated using the hypergeometric test.

(G) Enrichment of distinct coregulators in stage-specific enhancers. The top enriched TF motifs in lost or gained enhancers between fetal and adult HSPCs

(F0 versus A0) or ProEs (F5 versus A5) are shown. p values were calculated using the hypergeometric test.

See also Figure S1.
differ from regular enhancers in both the size and intensity of

the associated chromatin features, and are frequently found in

genomic proximity of cell identity genes and disease-associated

variants. Super-enhancers are also found at key oncogenic

drivers, thus selective inhibition of oncogenes may be achieved

by disruption of super-enhancers (Loven et al., 2013). These

studies suggested a model that a relatively small set of line-

age-defining super-enhancers might determine cell identity in

development and disease. Despite the proposed prominent

roles, the regulatory components and functional features associ-

ated with super-enhancers are currently unknown. The critical

questions are whether the super-enhancer represents a single

functional unit in vivo, and how the individual constituent en-

hancers contribute to maximal enhancer activity through coop-

erativity or interaction within their native chromatin environment

(Pott and Lieb, 2015).

We reasoned that modeling human fetal and adult-stage

erythropoiesis combined with epigenomic enhancer annotation

and analysis of the underlying DNA sequences can be used as

an unbiased approach to identify causative TFs driving enhancer

temporal activities in lineage specification. Comparing and con-

trasting TF binding associated with developmentally regulated

enhancers facilitates identification of lineage-regulating factors
10 Developmental Cell 36, 9–23, January 11, 2016 ª2016 Elsevier Inc
and their combinatorial rules as putative drivers of enhancer

turnover during differentiation. GATA2-to-GATA1 switch is a crit-

ical molecular driver of developmentally dynamic enhancers dur-

ing erythroid specification. Most importantly, through CRISPR/

Cas9-mediated loss-of-function analysis, we uncover functional

hierarchy and complexity of constituent enhancers within the

same enhancer clusters. Thus, genome-wide enhancer profiling

coupled with in-depth enhancer editing provides important

insights into the regulatory components controlling enhancer

functions during erythropoiesis.

RESULTS

Pervasive Changes in Enhancer Landscape during
Human Erythropoiesis
Primary fetal- and adult-stage human CD34+ hematopoietic

stem/progenitor cells (HSPCs) were expanded and differentiated

ex vivo into highly enriched stage-matched populations of

erythroid progenitor cells (proerythroblasts or ProEs) (Figure 1A).

We selected fetal or adult-stageHSPCs (F0 or A0; Figure 1B), and

lineage-committed ProEs (F5 or A5) for genome-wide enhancer

annotation and expression profiling. Specifically, we analyzed

active enhancer-associated histone modifications H3K4me1
.



and H3K27ac by chromatin immunoprecipitation sequencing

(ChIP-seq) and transcriptomic profiles in four distinct popula-

tions of human HSPCs or ProEs at the fetal or adult stage (Fig-

ures 1B–1E and S1A).

Comparative analysis of the enhancer landscape illustrates

pervasive temporal changes in enhancer usage underlying

lineage and developmental stage specificity. For example,

8,632 enhancers are lost (A0-A5-lost) and 8,496 enhancers are

acquired (A0-A5-gained) upon differentiation of adult HSPCs

(A0) to ProEs (A5), whereas only 3,996 enhancers are preserved

(A0-A5-shared, Figures 1B and 1C). The number of developmen-

tally dynamic enhancers is much higher than that of differentially

expressed genes (Figure S1B), suggesting that the enhancer

landscape undergoes more extensive turnover than transcrip-

tomic changes during lineage specification. Furthermore, we

identified 1,916 to 2,856 enhancers uniquely active at fetal or

adult stage in HSPCs or ProEs, indicating a substantial change

in genome-wide regulatory architecture across developmental

stages within the erythroid lineage (Figure 1B). During the transi-

tion from HSPCs to ProEs, lost enhancers at both fetal and adult

stages are significantly enriched in recognition sites (or motifs)

for HSPC-regulating TFs including ETS1, ERG, FLI1, and PU.1

(Orkin and Zon, 2008; Wilson et al., 2010), whereas gained en-

hancers are enriched in motifs for erythroid master regulators

GATA1 and TAL1 (Cantor and Orkin, 2002) (Figure 1F). By

contrast, the comparison between fetal and adult stage-specific

enhancers reveals enrichment of distinct TF motifs (Figure 1G).

Of note, the most enriched motifs in F5-A5-gained enhancers

are IRF1, IRF2, and STAT1/2, consistent with recent studies

demonstrating a role of inflammatory signaling pathways in es-

tablishing HSPC programs (Espin-Palazon et al., 2014; He

et al., 2015; Li et al., 2014; Xu et al., 2012). Taken together, these

results indicate that the lineage-defining TFs are functionally

conserved within enhancers during lineage specification; how-

ever, they cooperate with distinct stage-specific cofactors to

modulate enhancer landscape for fetal and adult erythropoiesis.

Enhancers Control Lineage and Stage-Specific
Transcription
To directly examine the correlation between enhancer activities

and lineage or developmental stage-specific gene expression,

we mapped enhancers to target genes using the ‘‘nearest

neighbor gene’’ approach (Heintzman et al., 2009; Visel et al.,

2009a; Xu et al., 2012) and compared these with lineage or

stage-specific gene expression (Figure 2A and Table S3). Impor-

tantly, the erythroid lineage-specific enhancers (F0-F5-gained

andA0-A5-gained) strongly associate with genes induced during

erythropoiesis (F0-F5-up and A0-A5-up), whereas the HSPC-

associated enhancers (F0-F5-lost and A0-A5-lost) strongly

associate with downregulated genes (F0-F5-down and A0-

A5-down). Similarly, the presence of stage-specific enhancers

highly correlates with gene expression changes in the respective

fetal or adult stage (Figure 2A).

Of note, by focusing on representative A0-A5-up genes, we

observed that genes with an increasing number of enhancers

display faster expression kinetics and higher mRNA levels during

differentiation (Figure 2B). We then compared on a global scale

the expression kinetics of genes associated with single and mul-

tiple lost or gained lineage-specific enhancers (Figure 2C). These
Dev
analyses demonstrate that an increasing number of enhancers

strongly correlate with more rapid kinetics and pronounced

transcriptional changes. It has been suggested that clustered

enhancers, including super-enhancers, associate with critical

developmental or cancer-associated transcription units (Hnisz

et al., 2013; Loven et al., 2013; Whyte et al., 2013). Consistent

with this notion, we observed that the lineage-specific super-

enhancers correlate with more robust transcriptional changes

than regular enhancers (Figure 2D).

Enhancers can act from distance to regulate transcription. We

then compared the expression of genes targeted by enhancers

located at varying distance (Figure 2E). Interestingly, the prox-

imal enhancers correlate with more rapid kinetics and larger

quantitative changes in gene expression compared with distal

enhancers. Taken together, these analyses illustrate critical roles

of enhancers in modulating lineage- and stage-specific gene

expression patterns, and suggest that the quantity and physical

proximity of enhancers can influence the transcriptional robust-

ness of their gene targets during development.

In Situ Genomic Editing of the SLC25A37

Super-enhancer
Intensely marked enhancer clusters or super-enhancers, con-

sisting of multiple discrete enhancers spanning larger chromatin

domains, have been proposed to control genes essential for

cell identity. The enhancer cluster upstream of the SLC25A37

gene, consisting of three distinct constituent enhancers as

measured by H3K4me1 and H3K27ac ChIP-seq, is defined as

an erythroid-specific super-enhancer in both human (A5 ProE)

and mouse (G1ER) erythroid cells (Figure 3A and Table S4).

The orthologous mouse super-enhancer displays high primary

sequence homology, syntenic position, and similar chromatin

signature and TF occupancy (Figure 3A). The SLC25A37 gene

encodesMitoferrin 1 that functions as an essential mitochondrial

importer for iron metabolism and heme biogenesis. A genetic

deficiency of SLC25A37 results in profound hypochromic ane-

mia in vertebrate species (Amigo et al., 2011; Shaw et al.,

2006). The expression of SLC25A37, but not the neighboring

ENTPD4 gene, is progressively and significantly induced during

human and mouse erythropoiesis (Figures S2A and 3C), sug-

gesting that it is trans-activated through the upstream super-

enhancer.

To define the regulatory components of the SLC25A37 super-

enhancer, we asked whether the function of each constituent

enhancer depends on the activity of neighboring enhancers

in situ. We employed site-directed loss-of-function analysis of

the SLC25A37 super-enhancer constituents using CRISPR/

Cas9-mediated genomic engineering. We focused on the or-

thologous mouse super-enhancer in the murine G1E/G1ER

erythroid cell model (Welch et al., 2004). Analogous to the

ex vivo erythroid maturation of human HSPCs, the Gata1-null

G1E cells are maintained in an undifferentiated state and ex-

press a high level of Gata2. Upon activation of the Gata1-ER

transgene by b-estradiol treatment in G1ER cells, Gata1 mRNA

was progressively elevated whereas Gata2 expression was

sharply downregulated, resulting in a ‘‘GATA switch’’ (Figures

S3A and S3B).

We designed sequence-specific single-guide RNAs (sgRNAs)

flanking each constituent enhancer (E1, E2, and E3) or the
elopmental Cell 36, 9–23, January 11, 2016 ª2016 Elsevier Inc. 11
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Figure 2. Enhancers Control Lineage- and Stage-Specific Transcription

(A) Enhancers positively associate with lineage or stage-specific gene expression changes. The enrichment significance of differentially expressed genes

(columns) harboring different types of enhancers (rows) is calculated using Fisher’s exact test.

(B) Representative genes targeted by one, two, three, and four ‘‘A0-A5-gained’’ enhancers are shown, respectively. The putative enhancers are depicted by

shaded lines. The mRNA expression of each gene is shown on the right.

(C) mRNA expression of genes harboring single versus multiple enhancers.

(D) The correlation between mRNA expression and regular enhancers versus super-enhancers.

(E) mRNA expression of genes harboring enhancers with varying distance.

Values are shown as mean ± SEM between replicates.
promoter (P) (Figure 3B). Upon transfection into undifferentiated

G1E cells together with an SpCas9-expressing construct, we

screened and obtained multiple independent single-cell-derived

clones containing biallelic deletion of each enhancer (Figures

S2B and S2C). Surprisingly, knockout of individual enhancers

confers markedly varying effects on Slc25a37 expression.

Specifically, while deletion of E1 or E2 individually only modestly

or slightly impairs Slc25a37 activation during differentiation,

respectively, E3 deletion abolishes its activation, resulting in a

15-fold decrease in expression (48 hr after b-estradiol treatment;

Figure 3C). The expression of the neighboring Entpd4 gene

remains low and unchanged in control and enhancer-deletion

cells (Figure S2D). ChIP-seq analysis of CTCF reveals two

CTCF binding sites between Slc25a37 and Entpd4 genes

(Figure S2E), suggesting that the Slc25a37 super-enhancer

does not control Entpd4 transcription in erythroid cells. The dif-

ferentiation kinetics of G1E cells, as measured by Gata1 and

Gata2 expression, appear ostensibly normal in the absence of

Slc25a37 enhancers (Figures S3A and S3B).

Of note, by using combinations of sgRNAs, we also ob-

tained G1E cells containing deletion of multiple constituent
12 Developmental Cell 36, 9–23, January 11, 2016 ª2016 Elsevier Inc
enhancers (Figures 3B, S3C, and S3D). Consistent with a

prominent role of E3 in super-enhancer activation, combined

deletion of E2 and E3 (E2-3) or all three enhancers (E1-3)

completely abolishes Slc25a37 expression upon differentia-

tion (Figure 3C). Importantly, deletion of individual or multiple

constituent enhancers has only a subtle effect on Slc25a37

baseline expression in G1E cells (Figures 3C, S3C, and

S3D), indicating that enhancer usage is highly context spe-

cific. Loss of E3 leads to near absence of H3K27ac, GATA1

and TAL1 occupancy at the neighboring E1 and E2 enhancers,

whereas loss of E1 or E2 has minimal impact on H3K27ac

or GATA1/TAL1 binding at neighboring enhancers (Figures

3D–3G). These results strongly suggest that, despite the

indistinguishable chromatin features and TF occupancy at

the Slc25a37 constituent enhancers, the E3 enhancer is

functionally more potent than its neighboring enhancers in

directing transcriptional activation. Thus, our in-depth in situ

enhancer-deletion analyses demonstrate that the Slc25a37

super-enhancer is composed of a functional hierarchy con-

taining both critical and dispensable constituent components

(Figure 3H).
.
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Control of Enhancer Activities by Distinct Combinations
of Transcription Factors
A common approach to identifying enhancer-associated TFs is

to survey for the presence of TF binding consensus sequences

(or motifs), without knowing whether the putative motifs are

occupied by the cognate TFs in the cell type of interest. We

reasoned that uncovering the functionally relevant TFs that asso-

ciate with developmentally dynamic enhancers should help to

infer lineage-specific regulators and their combinations in con-

trolling cellular identity. To this end, we compared the motif

enrichment and ChIP-seq occupancy of a panel of lineage-regu-

lating TFs (GATA1, TAL1, FLI1, and PU.1) and the ubiquitously

expressed CTCF (Figure 4A). Strikingly, while only 3% (22,570

of 707,718) of the GATA1 motif-matched loci are covered by

GATA1 ChIP-seq at a genome scale in ProEs, 34% of identified

GATA1 motifs are covered by GATA1 within the enhancer

context. Furthermore, 55% of GATA1 motifs at A0-A5-gained

enhancers are occupied by GATA1, in contrast to only 9% in

A0-A5-lost enhancers, consistent with a prominent role of

GATA1 in erythroid specification. A similar pattern is observed

for another principal erythroid regulator, TAL1 (Figure 4A). In

stark contrast, the opposite patterns are observed for HSPC-

regulating FLI1 and PU.1. Of note, comparable frequencies of

CTCF motif-matched loci are covered by CTCF ChIP-seq in

both cell types. These analyses demonstrate that functionally

relevant TF motifs are highly enriched in lineage-selective en-

hancers of lineage-relevant cell types.

To comprehensively identify TFs involved in developmentally

dynamic enhancers, we performed motif enrichment analysis

and identified 86 TF motifs that are significantly enriched in at

least one enhancer type across 12 types of lineage or stage-

specific enhancers (Figures 4B and S4A). Specifically, GATA1

and GATA1:TAL1motifs are highly enriched in the erythroid-spe-

cific F0-F5-gained and A0-A5-gained enhancers. In contrast,

PU.1, RUNX1, ETS1, and FLI1 motifs are highly enriched in

the HSPC-specific F0-F5-lost and A0-A5-lost enhancers. To

validate the motif analysis, we performed 30 additional ChIP-

seq analyses of identified TFs in both HSPCs and ProEs,

including GATA1, GATA2, TAL1, PU.1, and RUNX1 in HSPCs

(F0 and A0) and/or ProEs (F5 and A5) (Figures 4C, 5F, and Table

S1). We also re-analyzed 45 previously published ChIP-seq

datasets of TFs and chromatin regulators obtained in the same

cell populations (Abraham et al., 2013; Beck et al., 2013; Dogan
Figure 3. CRIPSR/Cas9-Mediated Deletion Analysis of the SLC25A37 S

(A) Chromatin signatures and TF occupancy within the human or mouse SLC

differentiated G1ER cells are shown, respectively. The SLC25A37 constituent enh

lines. Super-enhancers were called using Rose (Whyte et al., 2013) base on the H

shown.

(B) Schematic of CRISPR/Cas9-mediated genomic editing to dissect the SLC25

scissors indicate DNA double-strand breaks induced by CRISPR/Cas9. The red

(C) Expression of Slc25a37mRNA in unmodified (control) and enhancer-deletion G

mRNA expression levels relative to GAPDH are shown. Each colored circle repres

clone. Results are means ± SD of multiple independent clones. The p value me

group. *p < 0.01; **p < 0.001.

(D–G) ChIP-qPCR analysis of H3K4me1, H3K27ac, GATA1, and TAL1 in contr

each constituent enhancer (E1, E2, and E3) are used. Oct4 promoter is analyzed

*p < 0.01.

(H) Schematic of the hierarchical structure of the SLC25A37 super-enhancer.

See also Figures S2 and S3.
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et al., 2015; Su et al., 2013; Xu et al., 2012, 2015) (Table S1).

Consistent with the motif analysis, ChIP-seq of a panel of identi-

fied TFs clearly demonstrates enrichment of distinct TF clusters

within each enhancer type (Figures 4C and S4B).

To explore the TF combinatorial rules, we determined the

co-association between TFs within the enhancer repertoires

(Figure 4D). By hierarchical clustering analysis, we identified

five distinct TF combinatorial modules, including expected asso-

ciations such as GATA1 and TAL1, and some less expected as-

sociations such as NFE2 and MYB. Importantly, we found that

the ubiquitous ‘‘housekeeping’’ E2F-SP1 and AP1 modules,

and the HSPC-specific RUNX1-FLI1-PU.1-ETS module, are in-

terconnected but dissociable, suggesting that distinct TF combi-

nations cooperate to modulate the spatiotemporal activities of

enhancers in a highly context-specific manner. Taken together,

these analyses uncover TF combinatorial regulatory patterns

with known and unknown roles as putative drivers of enhancer

turnover during erythropoiesis.

Enhancer-Centered TF Combinatorial Regulatory
Networks
To illustrate the temporal control of enhancer activities, we devel-

oped a computationalmethodology to delineate enhancer-medi-

ated transcriptional networksbyconnectingmotif enrichment, TF

occupancy, and enhancer activity (Figure 5A). In brief, to quantify

the relative importance of individual TF on enhancer specificity,

we calculated the enrichment score as the significance of the

enrichment of TF ChIP-seq peaks (or motif-matched loci) within

each type of lineage or stage-specific enhancers using the whole

genome as background. To quantify the likelihood of TF cooper-

ation, we calculated the combinational score as the frequency of

co-occurrence of two TFs at the same enhancer relative to

genomebackground.We thenselectedTF/motif pairswith signif-

icant combinational scores to assemble the networks for each

enhancer type in Cytoscape (Shannon et al., 2003).

Notably, the A0-A5-lost network is predominantly modulated

by the PU.1-RUNX1-FLI1-ETS-GATA2 combinatorial interac-

tions. In contrast, the A0-A5-gained network is dominated by

GATA1-TAL1 together with an IRF2-STAT1-STAT2 interaction

module, suggesting that the temporal changes in TF occupancy

control differential enhancer activity (Figure 5B). Distinct sets

of TF combinatorial modules were found at lineage or stage-

specific enhancers (Figure S5 and Table S5). Importantly, the
uper-enhancer

25A37 locus in HSPC (A0) versus ProE (A5) or undifferentiated G1E versus

ancers (E1, E2, and E3) and the proximal promoter (P) are depicted by shaded

3K27ac ChIP-seq signal. The sequence conservation by PhastCons analysis is

A37 super-enhancer. The scheme is adapted from Pott and Lieb (2015). The

dashed lines indicate the deleted genomic DNA.

1E/G1ER cells at various time points (0–48 hr) after b-estradiol treatment. The

ents an independent single-cell-derived biallelic enhancer or promoter-deletion

asures the statistical significance between control (C) and each experimental

ol and enhancer-deletion cells. Primers against Slc25a37 promoter (P) and

as a negative control. Results are means ± SD of multiple independent clones.

.
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Figure 4. Combinatorial Control of Enhancers by Transcription Factors

(A) Enrichment of functionally relevant TF motifs. The numbers of identified motif-matched loci and the percentage of motifs overlapped with ChIP-seq peaks

are shown.

(B) Hierarchical clustering of 86 TF motifs significantly enriched in the lineage- and/or stage-specific enhancers. Heatmap shows the enrichment score of

TF motifs.

(C) Hierarchical clustering of ChIP-seq occupancy of the indicated TFswithin enhancers. Heatmap shows the enrichment score based on the overlap significance

calculated by Fisher’s exact test.

(D) Combinatorial TF modules within enhancers during erythropoiesis. TF modules were defined by hierarchical clustering of enriched TF motifs based on their

enrichment score across all 12 enhancer types. Five distinct TF motif modules are shown for (1) GATA1-TAL1, (2) E2F-SP1, (3) AP1, (4) RUNX1-FLI1-PU.1-ETS,

and (5) NFE2-MYB. The color code indicates the Pearson correlation coefficient (PCC) of the enrichment scores.

See also Figure S4.
GATA2 and GATA1 combinatorial interactions are present in

both A0 and A5 networks, with GATA2 dominating the A0

network while GATA1 dominates the A5 network (Figure 5B).

Thus, our data suggest that the combinatorial assembly of

lineage-defining TFs and transcriptional coregulators at lineage-

and stage-specific enhancers directs temporal regulation of

transcriptional networks during erythroid specification.

To validate the network predictions, we first compared the

network-identified interactions with known protein-protein inter-

actions (PPIs) from Lit-BM-13 (Rolland et al., 2014) and STRING

(Szklarczyk et al., 2015) databases. We observed that the

network-predicted TF interactions are 7.3- and 3.8-fold more

enriched of known PPIs in Lit-BM-13 and STRING databases,
Dev
respectively, compared with random interactions (p values

8.0 3 10�33 and 1.9 3 10�66 by Fisher’s exact test; Figure 5C).

We then investigated the extent to which disease-associated

SNPs occur in enhancers containing network-predicted TF pairs

(Figure 5D). We observed that enhancers containing network-

predicted TF interactions (TF pairs in network; Figure 5D)

are highly enriched in GWAS SNPs, particularly the hematologic

and erythroid trait-associated SNPs. Furthermore, A0-A5-gained

erythroid-specific enhancers are more significantly enriched in

erythroid SNPs than A0-A5-lost HSPC-specific enhancers (Fig-

ure 5E). These analyses confirm that the enhancer-centered TF

combinatorial networks can be used to identify functionally rele-

vant and disease-associated regulatory interactions.
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In addition, we generated ChIP-seq density heatmaps within

the lost, shared, and gained enhancers in HSPCs (A0) and ProEs

(A5). Strikingly, while the HSPC-regulating TFs (FLI1 and PU.1),

p300, and BRG1 exclusively associate with HSPC-specific

(A0-A5-lost) and shared enhancers, GATA2 can occupy a subset

of erythroid-specific (A0-A5-gained) enhancers prior to their acti-

vation (Figure 5F). A significant portion of A0-A5-gained (17%)

and -shared (30%) enhancers display GATA2-to-GATA1 switch.

These results, together with the network analysis, strongly sug-

gest that GATA switch plays a major role in modulating enhancer

turnover during erythroid specification.

GATA2-to-GATA1 Switch Functions as a Molecular
Driver of Enhancer Turnover
To further dissect the molecular processes controlling enhancer

turnover, we focused on enhancers that are lost or gained be-

tween adult HSPCs (A0) and ProE (A5). Specifically, we subdi-

vided A0-A5-lost enhancers into two groups depending on

whether they have lost H3K27ac (‘‘active / primed’’), or both

H3K27ac and H3K4me1 (‘‘active / silent’’) (Figure S6A). Simi-

larly, we subdivided A0-A5-gained enhancers into two groups

depending on the prior chromatin states in HSPCs (‘‘silent /

active’’ and ‘‘primed/ active’’). Notably, the active/ silent en-

hancers are highly enriched for TF motifs required for HSPC

identity such as RUNX1, PU.1, FLI1, and ETS1. In contrast, the

silent / active enhancers are highly enriched for GATA1 and

TAL1 motifs. We next examined the occupancy of various line-

age-specific TFs and chromatin regulators at the enhancer

groups. Strikingly, GATA2-to-GATA1 switch (or GATA switch)

is highly prevalent within transcriptionally primed enhancers,

consisting of 30% of active / primed lost enhancers and 41%

of the primed / active gained enhancers (Figure S6B). By

network (Figure S6C) and motif analysis (Figure S6D), we also

identified GATA switch as the major TF combinatorial module

in primed enhancers. These data strongly suggest that GATA

switch functions as a major molecular driver of enhancer turn-

over during erythropoiesis.

Genomic Features of GATA Switch Enhancers
To further dissect the role of GATA switch in enhancer turnover,

we compared GATA2 and GATA1 occupancy within A0 and A5

enhancers by ChIP-seq. Specifically, we enumerated the distri-
Figure 5. TF Combinatorial Regulatory Networks within Enhancers

(A) Schematic of the construction of enhancer-mediated TF combinational regul

(B) Representative TF combinational regulatory networks in adult HSPCs (A0, left)

(red) or motif information (gray). The size of node represents the enrichment scor

green: TF-to-Motif; gray: Motif-to-Motif). The width of edges represents the co

indicate the most significantly enriched TF interactions.

(C) Enrichment of known protein-protein interactions (PPIs) in network-predicted T

A0 or A5 network, whereas ‘‘Random’’ represents all possible interactions amon

(D) Enrichment of hematologic and erythroid trait-associated SNPs in enhancers c

lost enhancers; TF, enhancers occupied by at least one TF based onChIP-seq ana

occupied by TF pairs identified in the A0 or A5 network. The p value measures sta

**p < 0.001.
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The x axis is the same as in (D).

(F) ChIP-seq density heatmaps are shown for H3K4me1, H3K27ac, GATA1, GATA

enhancers. The percentage of GATA2-to-GATA1 switch enhancers is shown on

See also Figures S5 and S6.

Dev
bution of enhancers occupied by GATA2-only, GATA1-only, or

GATA2-to-GATA1 switch (GATA switch) (Figure 6A and Table

S6). By overlap analysis, we identified 3,101 GATA switch en-

hancers and the remainder as GATA2-only (2,697) or GATA1-

only (4,348) enhancers, respectively. Importantly, the GATA

switch enhancers consist of 39% of A0-A5-shared and 47% of

A0-A5-gained enhancers, and only 14% of A0-A5-lost en-

hancers, consistent with the role of GATA switch as a major

driver for enhancer activation.

We then examined the differentially enriched TF motifs within

GATA switch and GATA1/2-only (or non-switch) enhancers. We

found that GATA motifs are highly enriched in GATA switch

and GATA1-only enhancers, but not in GATA2-only enhancers.

By contrast, the GATA2-only enhancers are highly enriched

with TF motifs known to be important for HSPC identity (Fig-

ure 6B). These analyses indicate that the recruitment of GATA

factors within theGATA switch enhancers aremediated primarily

through GATA motifs (motif-driven). However, GATA2 binding to

the non-switch GATA2-only enhancers are mediated largely

through transcriptional cofactors (cofactor-driven). We then

compared the mRNA expression of genes targeted by GATA2-

only, GATA switch, or GATA1-only enhancers. The GATA2-only

targets are progressively downregulated, whereas the GATA1-

only targets are progressively upregulated during erythropoiesis.

Interestingly, the expression levels of GATA switch enhancer

targets are much higher than that of genomic average, and

remain largely unchanged during differentiation (Figure 6C).

These results suggest that, on the global scale, GATA switch en-

hancers function to maintain the high level of gene expression

critical for cellular differentiation and housekeeping functions,

in contrast to GATA1-only or GATA2-only enhancers (Figure 6D).

In Situ Genomic Editing of GATA Switch Enhancers in
Lineage Differentiation
To gain functional insights into the role of GATA switch in regu-

lating enhancer activities, we employed CRISPR/Cas9-medi-

ated genomic editing to remove GATA switch or non-switch

enhancers at multiple independent loci in G1E cells (Figures 7

and S7). Strikingly, loss of GATA switch and non-switch en-

hancers results in pleiotropic effects on target gene expression

during erythroid differentiation. At the Pinx1 gene, biallelic dele-

tion of the GATA2-only enhancer (E1) markedly impairs Pinx1
atory networks.

and ProEs (A5, right). In the network, the nodes represent TFwith ChIP-seq data

e. The color of edges represents different types of combination (red: TF-to-TF;

mbinatorial score. The blue arrows and the areas outlined with dashed lines

F interactions. ‘‘Network’’ on the x axis represents TF interactions predicted in

g TFs shown in the network.

ontaining network-predicted TF interactions. All, all A0-A5-gained and A0-A5-

lysis; TF Pairs, enhancers occupied by TF pairs; TF Pairs in Network, enhancers

tistical significance between all enhancers and each enhancer group. *p < 0.05;

ows the percentage of enhancers containing erythroid trait-associated SNPs.

2, FLI1, PU.1, TAL1, KLF1, p300, and BRG1 within the indicated lost or gained

the right.
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Figure 6. GATA Switch Controls Enhancer Activities during Erythroid Specification

(A) Distribution of GATA switch and non-switch enhancers within the lost, gained, or shared enhancers in adult HSPCs (A0) and ProEs (A5). The numbers of

GATA1, GATA2, or both (GATA switch) occupied enhancers are shown.

(B) Differential enriched TF motifs in GATA2-only, GATA switch, or GATA1-only enhancers.

(C) mRNA expression of genes associatedwith GATA2-only, GATA switch, or GATA1-only enhancers during erythroid differentiation of adult HSPCs (A0) to ProEs

(A5). The normalized expression level in particular cell types (Z score) were calculated using barcode (McCall et al., 2014).

(D) GREAT analysis (McLean et al., 2010) of GATA2-only, GATA switch, or GATA1-only enhancers. Top enriched gene ontology (GO) biological processes, mouse

phenotypes, and pathways are shown, respectively.

See also Figure S6.
expression in G1E cells and during early erythroid differentiation

(4 hr and 8 hr after b-estradiol treatment; Figures 7A–7C),

whereas Pinx1 is activated at a comparable level as in the un-

modified control cells during late differentiation (24 hr and

48 hr). In contrast, deletion of the GATA switch enhancer (E2)

significantly and selectively impairs Pinx1 expression during

late differentiation. The differentiation kinetics of G1E cells

remain ostensibly normal in the absence ofPinx1 enhancers (Fig-

ures S7A–S7D). Similarly, biallelic deletion of the Mrto4 GATA2-

only enhancer (E1) impairs baseline Mrto4 expression, whereas

deletion of the GATA switch enhancer (E2) selectively diminishes

Mrto4 expression upon differentiation (Figures 7B, 7D, 7E, and

S7E–S7H). The distinct effects upon loss of GATA2-only versus

GATA switch enhancers strongly suggest that multiple spatially

or temporally distinct enhancers cooperate to control the optimal

expression of target genes.

We then employed genomic editing to dissect the requirement

of GATA switch enhancers within the paradigmatic Gata2 locus

(Bresnick et al., 2010; Dore et al., 2012; Kaneko et al., 2010).

Gata2 is a potent regulator of hematopoietic stem/progenitor

cells and is highly expressed in HSPCs, then rapidly silenced in

erythroid cells (Bresnick et al., 2010; Tsai et al., 1994) (Figure 7H).

The transcription of Gata2 gene is controlled by multiple distal

regulatory elements including an enhancer cluster immediately

upstream of the Gata2 transcriptional start site (TSS) (E1, E2,

and E3; Figures 7F and 7G). The upstream enhancers display

indistinguishable chromatin features, such as the enrichment
18 Developmental Cell 36, 9–23, January 11, 2016 ª2016 Elsevier Inc
of histone marks H3K4me1 and H3K27ac, and occupancy by

GATA2 in HSPCs (or G1E) and GATA1 in ProEs (or G1ER),

respectively (Figure 7F). Surprisingly, deletion of E1 has no effect

on Gata2 expression in G1E and during early differentiation, but

Gata2 expression is markedly induced during late differentiation

(Figures 7G and 7H). In contrast, deletion of E2 or E3 significantly

impairs Gata2 expression in G1E, with minimal effects on its

expression upon differentiation. Of note, these findings are

consistent with previous studies using engineered mouse

models lacking critical GATA motifs at the Gata2 upstream en-

hancers. In mice lacking a single palindromic GATA motif 1.8

kb upstream of the Gata2 TSS, which overlaps with the E1

enhancer, Gata2 expression is reactivated in late-stage erythro-

blasts, resulting in defective erythropoiesis (Snow et al., 2010).

By contrast, in mice lacking GATA motifs 2.8 kb upstream of

Gata2 TSS, which overlaps with the E2 enhancer, Gata2 expres-

sion is compromised in HSPCs (Snow et al., 2011).

Together with prior studies, our analyses demonstrate that

qualitatively distinct and functionally divergent GATA switch en-

hancers cooperate within the same enhancer cluster at the

Gata2 locus. While the E2 and E3 enhancers are indispensable

for maximal Gata2 activation in stem/progenitor cells, the E1

enhancer is required to maintain Gata2 repression in committed

erythroid cells. Thus, despite the indistinguishable chromatin

features among the GATA switch enhancers at the Gata2 locus,

we reveal through in situ genomic editing the functional diversity

of GATA switch enhancers whereby enhancers with opposing
.
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Figure 7. Genome Editing of GATA Switch-Mediated Enhancer Turnover

(A) Chromatin signatures and TF occupancy within the human or mouse PINX1 locus. The putative GATA2-only (E1) and GATA switch (E2) enhancers are shown.

The putative active enhancers are depicted by shaded lines.

(B) Schematic of CRISPR/Cas9-mediated deletion of Pinx1 or Mrto4 enhancers. The scissors indicate DNA double-strand breaks induced by CRISPR/Cas9.

(C) Expression of Pinx1mRNA in unmodified (control) and enhancer-deletion cells at various time points (0–48 hr) after b-estradiol treatment. Each colored circle

represents an independent biallelic enhancer-deletion clone. Results are means ± SD of multiple independent clones. *p < 0.01; n.s., not significant.

(D) Chromatin signatures and TF occupancy within the mouse Mrto4 locus. The putative GATA2-Only (E1) and GATA switch (E2) enhancers are shown. The

putative active enhancers are depicted by shaded lines.

(E) Expression of Mrto4 mRNA in control and enhancer-deletion cells. Results are means ± SD of multiple independent clones. *p < 0.01; n.s., not significant.

(F) Chromatin signatures and TF occupancy within the human or mouse GATA2 locus. The putative GATA switch (E1, E2, and E3) enhancers are shown. The

putative active enhancers are depicted by shaded lines.

(G) Schematic of CRISPR/Cas9-mediated deletion of Gata2 enhancers. The scissors indicate DNA double-strand breaks induced by CRISPR/Cas9.

(H) Expression of Gata2 mRNA in control and enhancer-deletion cells. Results are means ± SD of multiple independent clones. *p < 0.01; n.s., not significant.

See also Figure S7.
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functions cooperate to orchestrate gene expression during

cellular differentiation.

DISCUSSION

In Situ Perturbation of Enhancers
The term ‘‘transcriptional enhancer’’ was first introduced to

describe the effects of SV40 DNA on the transcription of the rab-

bit b-globin gene (Banerji et al., 1981). Since then, enhancers

have been routinely identified and characterized in ectopic heter-

ologous reporter assays or by sequence analysis (Bulger and

Groudine, 2011; Pennacchio et al., 2013; Visel et al., 2007).

With the advent of genome-scale chromatin profiling, many pu-

tative enhancers have been identified in the human genome

(Heintzman et al., 2007, 2009; Visel et al., 2009a, 2009b). While

the biological importance of enhancers could be inferred from

these genome-scale studies, it remains challenging to ascertain

the precise in vivo function of individual enhancers using conven-

tional loss-of-function methods. Thus, advances in genome en-

gineering technologies hold enormous promise for systematic

evaluation of the functional significance of enhancers in physio-

logically relevant contexts (Bauer et al., 2013; Canver et al.,

2015; Groschel et al., 2014; Hnisz et al., 2015; Mansour et al.,

2014; Xu et al., 2015).

In this study, we employed the CRISPR/Cas9 system to

examine the functional requirements of a panel of discrete en-

hancers in an experimental model recapitulating normal

erythroid development. Our results reveal functional hierarchy

of enhancer regulation within their native chromatin. We first

demonstrate the distinct roles of GATA switch and GATA2-only

(or non-switch) enhancers in the temporal control of gene tran-

scription. Moreover, by systematic dissection of three distinct

GATA switch enhancers at the Gata2 locus, our studies uncover

functional divergence of enhancers cooperating within the same

cluster. Despite the indistinguishable chromatin features based

on ChIP-seq analyses, the neighboring GATA switch enhancers

display distinct requirements for the precise control of Gata2

transcription. Hence, our studies highlight the power and neces-

sity of combining genome-scale enhancer annotation with

genomic editing for analyzing enhancer cooperation during line-

age differentiation. We speculate that further in-depth studies of

enhancer regulation through high-throughput, high-resolution

in situ enhancer editing will likely uncover novel regulatory prin-

ciples underlying the context-specific actions of enhancers in

mammalian genomes.

Hierarchical Composition of Erythroid Super-enhancers
Highly marked clusters of enhancers or super-enhancers have

been identified in various cell types (Hnisz et al., 2013; Parker

et al., 2013; Whyte et al., 2013). Despite the proposed roles of

super-enhancers in gene regulation and disease, the functional

significance of enhancer clustering within their native chromatin

environment remains largely unexplored. More specifically, it is

unclear whether super-enhancer represents a simple assembly

of regular enhancers or whether it behaves as a single functional

unit through cooperative activities of its constituent enhancers

(Pott and Lieb, 2015).

By focusing on the Slc25a37 super-enhancer, our studies

demonstrate that the Slc25a37 clustered enhancers are
20 Developmental Cell 36, 9–23, January 11, 2016 ª2016 Elsevier Inc
composed of a functional hierarchy of constituent components,

with some significantly stronger than others for target gene

expression during cellular differentiation. Strikingly, although all

constituent enhancers possess similar levels of enhancer-asso-

ciated histone marks and TF occupancy, deletion of each

enhancer has a markedly distinct effect on Slc25a37 transcrip-

tion. Our findings on the distinct requirement of enhancer

constituents are consistent with a recent analysis of several

super-enhancers in mouse embryonic stem cells (Hnisz et al.,

2015). One critical difference, however, is that our studies were

performed in cells undergoing lineage differentiation. Hence,

we were able to analyze and compare the effects of each

enhancer deletion during the spectrum of erythroid differentia-

tion. Importantly, while deletion of individual Slc25a37 constitu-

ent enhancers has minimal effects at the undifferentiated stage,

deletion of E3 has a profound impact on Slc25a37 expression at

later differentiation (Figure 3C). The developmental stage-

specific requirement of enhancer functions would have been

overlooked if one had only analyzed the steady-state undifferen-

tiated cells.

Moreover, our results suggest a cooperative behavior in the

recruitment of master TFs at the Slc25a37 super-enhancer.

While deletion of E1 or E2 has a minimal effect on histone marks

and TF occupancy at neighboring enhancers, loss of E3 substan-

tially reduces H3K27ac and completely abolishes GATA1/TAL1

binding at the neighboring enhancers. Combined deletion of

E3 and neighboring enhancers further diminishes the tran-

scriptional activity, the level of H3K27ac, and TF occupancy at

Slc25a37 enhancer and promoter regions, suggesting that E3

cooperates with other constituent enhancers to achievemaximal

activity. Interestingly, despite the profound impact on H3K27ac

level, loss of individual enhancers or their combinations does

not affect H3K4me1, suggesting that the level of H3K27ac is

more sensitive and predictive to transcriptional activities. Taken

together, our results indicate that at least a subset of super-

enhancers is organized in a hierarchical structure composed of

enhancer constituents with non-redundant functions. Some con-

stituent enhancers may possess significantly stronger effects on

transcription while others cooperate with the dominant en-

hancers for maximal activity. These findings also raise the possi-

bility that further in-depth dissection of super-enhancers by

high-resolution genomic editingmay unravel the regulatory com-

ponents and distinct vulnerabilities underlying enhancer clus-

tering in gene regulation.

TF Combinatorial Rules Underlying Enhancer Dynamics
during Erythropoiesis
Enhancers are known to function as multifactorial platforms

for binding of lineage-regulating TFs, chromatin regulators, and

signaling effectors (Buecker and Wysocka, 2012; Xu and Smale,

2012). A long-standing question is how enhancers acquire the

ability to translate intra- and extracellular signals to cell-type-

specific transcriptional responses in development and disease.

On the other hand, it is estimated that there are 2,000–3,000

sequence-specific DNA binding TFs encoded by the human

genome (Babu et al., 2004), with 200–300 TFs being expressed

in each cell type (Vaquerizas et al., 2009). However, the underly-

ing principles by which TFs collaborate to regulate enhancer dy-

namics are poorly understood.
.



In this study, we developed a new network approach to con-

nect TF occupancy, motif enrichment, and enhancer activity

for illustration of the combinational regulatory mechanisms in

complex differentiation processes. The rationale rests on accu-

mulating evidence that enhancers are critical modulators of line-

age- and stage-specific gene expression, and enrich for binding

sequences (or motifs) for lineage-regulating TFs (Figure 4A)

(ENCODE Project Consortium, 2012; Neph et al., 2012; Xu

et al., 2012). Using an ex vivo model for human erythropoiesis,

we identified distinct sets of TF combinatorial modules as puta-

tive drivers of enhancer turnover during erythroid differentiation.

Of note, the HSPC-specific enhancer network is predomi-

nantly modulated by the PU.1-RUNX1-FLI1-ETS-GATA2 combi-

natorial interactions. In contrast, the erythroid-specific enhancer

network is dominated by GATA1-TAL1 together with IRF2-

STAT1-STAT2 interactions (Figures 5, S5, and Table S5). More

importantly, we identified previously unrecognized TF interaction

modules including NFE2-MYB and PRRX2-ARID3A-GATA2

within the enhancer context, thus providing a platform for sub-

stantive future investigations. Finally, in-depth experimental

validation by ChIP-seq and CRISPR/Cas9-mediated loss-of-

function studies not only validated the overall approach but

also provided novel insights into the structure-function rela-

tionship of enhancer dynamics during erythroid specification.

Taken together, our studies demonstrate that the integrative

analysis of genome-wide enhancer annotation coupled with

in situ enhancer editing has the potential to identify the underly-

ing regulatory components of enhancer-directed cellular pheno-

types in complex developmental processes.

EXPERIMENTAL PROCEDURES

Cells and Cell Culture

Primary human adult and fetal CD34 + HSPCs were isolated as previously

described (Van Handel et al., 2010; Xu et al., 2012). Primary fetal or adult

committed proerythroblasts (ProEs) were generated ex vivo as previously

described (Sankaran et al., 2009; Xu et al., 2012). G1E/G1ER cells were

cultured as described by Welch et al. (2004).

ChIP-Seq and Data Analysis

ChIP-seq was performed as described by Xu et al. (2012). Other ChIP-seq

datasets were obtained from previous publications (Abraham et al., 2013;

Beck et al., 2013; ENCODE Project Consortium, 2012; Dogan et al., 2015;

Pinello et al., 2014; Su et al., 2013; Trompouki et al., 2011; Xu et al., 2012,

2015).

Enhancer Annotation

Putative active enhancers were annotated using the peaks of H3K4me1,

H3K27ac, and H3K27me3. In brief, H3K27ac peaks were used to define

the enhancer boundary, followed by filtering based on the criteria: (1) excluded

H3K27ac peaks not overlapped with H3K4me1 peaks; (2) excluded H3K27ac

peaks located within ±2-kb region of RefSeq-annotated promoters; (3)

excluded H3K27ac peaks overlapped with H3K27me3 peaks.

Identification of Lineage or Developmental Stage-Specific

Enhancers

Lineage-specific enhancers were identified by comparing A0 and A5, or F0

and F5 enhancers. Similarly, stage-specific enhancers were identified by

comparing F0 and A0, or F5 and A5 enhancers. The overlapped (R1 bp)

enhancers were considered as ‘‘shared’’ enhancers and the remainder as

‘‘lost’’ or ‘‘gained’’ enhancers. To obtain the high-confidence enhancers, we

filtered the enhancers using MAnorm (Shao et al., 2012; Xu et al., 2012) for

H3K27ac (referred as MH3K27ac). For lineage or stage-specific enhancers, we
Dev
only keep enhancers with jMH3K27acj > 1; for shared enhancers we keep en-

hancers with jMH3K27acj % 1.

Motif Enrichment Analysis

The position weight matrices of 196 core vertebrate motifs were downloaded

from the JASPAR database (Mathelier et al., 2014). Themotif enrichment score

was defined as �log10(p value), where p value is the significance of observed

over-representation of each motif in enhancer regions compared with

randomly selected control regions. Motif modules were detected based on

the hierarchical clustering of motif enrichment scores across lineage or

stage-specific enhancers (Table S2).

Construction of Enhancer-Mediated TF Regulatory Networks

The enrichment score was calculated to measure the significance of the

enrichment of TFChIP-seq peaks (ormotif-matched loci) within each enhancer

type relative to the genome background. The combinational score was calcu-

lated to measure the frequency of co-occurrence of two TFs at the same

enhancer compared with the genome background. TF or motif pairs with

significant combinational scores were selected to assemble the networks in

Cytoscape (Shannon et al., 2003).

Enhancer Editing by CRISPR/Cas9

The clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR-

associated (Cas) 9 nuclease system was used for enhancer-deletion analyses

following published protocols (Cong et al., 2013; Mali et al., 2013).
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